• مشکی
  • سفید
  • سبز
  • آبی
  • قرمز
  • نارنجی
  • بنفش
  • طلایی
تعداد مطالب : 192
تعداد نظرات : 1142
زمان آخرین مطلب : 5001روز قبل
آموزش و تحقيقات

  چاپگر لیزری

 چاپگرهای لیزری با توجه به ویژگی های منحصربفرد خود طی سالیان اخیر با استقبال عموم کاربران کامپیوتر در سراسر جهان مواجه شده اند. شرکت های تولیدکننده این نوع چاپگرها متناسب با خواسته های جدید و همزمان با پیشرفت تکنولوژی ، مدل های متفاوتی از این نوع چاپگرها را به بازار عرضه نموده اند.

مبانی چاپگرهای لیزری

استفاده از الکتریسیته ساکن در تکنولوژی چاپگرهای لیزری، یکی از اصول مهم و اولیه  است . الکتریسیته ساکن یک شارژ الکتریکی است که توسط اشیاء عایق ایجاد می گردد. بدن انسان نمونه ای در این زمینه بوده که می تواند باعث ایجاد الکتریسیته ساکن گردد. انرژی حاصل از الکتریسیته ساکن باعث ایجاد چسبندگی بین اشیاء می گردد. ( نظیر لباس های داخل یک ماشین خشک کن ). رعد و برق حاصل از یک ابر صاعقه دار نیز حامل الکتریسیته ساکن بوده که مسیر ابر تا زمین را طی خواهد کرد.

چاپگر لیزری از پدیده فوق بعنوان یک نوع " چسب موقت " استفاده می نمایدهسته اساسی سیستم فوق ، دستگاهی با نام " نورپذیر" (Photoreceptor) است . ماهیت فیزیکی دستگاه فوق، یک استوانه و یا یک سیلندر است. دستگاه فوق از مواد هادی نور تشکیل شده که توسط کوانتوم نور تخلیه می گردند. در ابتدا ، استوانه یک شارژ مثبت را از طریق یک سیم حامل جریان الکتریکی (Corona Wire) ، پیدا می کند . همزمان با چرخش استوانه ، چاپگر یک پرتو نور لیزری نازک را بر سطح استوانه بمنظور تخلیه الکتریکی بخش مربوطه ، می تاباند. در ادامه لیزر حروف و تصایر را  بر سطح استوانه خواهد نوشت .( یک الگو از شارژ الکتریکی ) . سیستم فوق می تواند با شارژ معکوس هم کار نماید، در این حالت یک شارژ الکترواستاتیک مثبت بر روی یک شارژ منفی بعنوان زمینه در نظر گرفته خواهد شد

پس از عملکرد الگوی موردنظر ، چاپگر سطح استوانه را  با گرد جوهر ( پودر مشکی رنگ با کیفیت مناسب ) شارژ شده مثبت، می پوشاند. با توجه با اینکه پودر فوق دارای شارژ مثبت است ، تونر به ناحیه تخلیه شده استوانه ( بار منفی ) چسبانده می گردد.( در این حالت شارژ زمینه مثبت نخواهد شد ) . عملیات فوق مشابه نوشتن بر روی سودا و چسباندن آن بر روی سطح مورد نظر است .

پس از چسباندن پودر مورد نظر ، استوانه  حول یک کاغذ می چرخد .قبل از اینکه کاغذ زیر استوانه قرار بگیرد ، یک شارژ منفی توسط سیم انتقالی Corona به آن داده می شود. شارژ فوق بمراتب قویتر از شارژ منفی الکترواستاتیک مربوط به تصویر بوده و کاغذ قادر به رها کردن پودر مربوطه خواهد بود. همزمان با حرکت کاغذ (با سرعت معادل استوانهبر روی کاغذ تصویر مربوطه درج خواهد شد. بمنظور ممانعت از چسبیدن کاغذ به استوانه ، بلافاصله پس از درج تصویرعملیات تخلیه شارژ توسط یک سیم Detac corona انجام خواهد شد.  

درنهایت ، چاپگر کاغذ را از بین یک Fuser ( یک زوج غلتک گرم ) عبور  داده می شود. در حین انجام فرآیند فوق، گردجوهر پاشیده شده  در کاغذ تنیده می گردد. غلتک ها باعث حرکت کاغذ به سمت سینی خروجی خواهند شد. Fuser باعث گرم شدن کاغذ نیز خواهد شد بهمین دلیل زمانیکه کاغذ از چاپگر خارج می گردد ، داغ است .

چه عاملی باعث می شود که کاغذ سوزانده نگردد؟ مهمترین عامل سرعت است . سرعت حرکت کاغذ توسط غلتک ها بگونه ای خواهد بود که باعث عدم سوختگی کاغذ خواهد شد

پس از ریختن پودر بر روی کاغذ ، سطح استوانه تحت تاثیر یک لامپ تخلیه قرار می گیرد. این لامپ روشن تمام سطح  "نور پذیراستوانه را تحت تاثیر قرار داده و تصاویر الکتریکی را پاک خواهد کرد. در ادامه سطح استوانه توسط سیم شارژCorna  تحت تاثیر شارژ مثبت قرار می گیرد.

کنترل کننده

قبل از انجام هر گونه عملیات توسط  چاپگر لیزری ، می بایست صفحه حاوی داده در اختیار آن قرار گرفته و در ادامه در رابطه با نحوه ایجاد خروجی مورد نظر تصمیم گیری می گردد. عملیات فوق بر عهده کنترل کننده چاپگر خواهد بودکنترل کننده چاپگر بعنوان برد اصلی چاپگر لیزری ایفای وظیفه می نماید. کنترل کننده فوق از طریق یک پورت ارتباطی نظیر : پورت موازی و یا پورت USB با کامپیوتر ارتباط  برقرار می نماید. در صورتیکه چاپگر به چندین کامپیوتر متصل باشد ، کاربران  متفاوت  قادر به ارسال درخواست های چاپ خود خواهند بود. در این حالت کنترل کننده ، هر یک از درخواست های واصله را بصورت جداگانه پردازش خواهد کرد. شکل زیر پورت های متفاوت یک چاپگر لیزری را نشان می دهد.

 

 بمنظور گفتمان بین کنترل کننده و کامپیوتر ، می بایست آنها با یک زبان مشترک صحبت نمایند. در چاپگرهای اولیه ، کامپیوتر یک نوع فایل متنی خاص را بهمراه مجموعه ای از کدهای اطلاعاتی برای چاپگر ارسال می کرد. با توجه به ماهیت  چاپگرهای اولیه و محدودیت فونت های موجود ، روش  فوق بخوبی تامین کننده نیازهای اطلاعاتی چاپگر بود. امروزه از صدها نوع فونت استفاده می گردد.بدین منظور لازم است که اطلاعات مورد نیاز چاپگر با استفاده از یک زبان پیشرفته در اختیار آن گذاشته شودمتداولترین زبانهای موجود در این زمینه  زبان PCL)Printer Command Language) مربوط به شرکت هیولت پاکارد و " پوست اسکریپت " مربوط به Adobe است . زبانهای فوق برای تشریح صفحه از یک نوع بردار استفاده می نمایند. بردار فوق مقادیر ریاضی از اشکال geometric می باشند. ( بصورت مجموعه ای از نقاط نخواهد بود ) چاپگر بردار را اخذ و در ادامه آن را به یک صفحه bitmap تبدیل می نماید.

برخی از چاپگرها از یک دستگاه اینترفیش گرافیکی GDI)Graphical device interface) در عوض PCL استناندارد، استفاده می نمایند. درسیستم فوق ، کامپیوتر بردار مربوط به نقاط را خود ایجاد می نماید، بدین ترتیب کنترل کننده پردازشی در این زمینه را انجام نداده و صرفا" دستورالعمل های نقاط را برای لیزر ارسال می نماید. در اغلب چاپگرهای لیزری ، کنترل کننده می بایست عملیات مربوط به سازماندهی داده های دریافتی از کامپیوتر را خود انجام دهد. اطلاعات فوق شامل : دستورات مربوط به نوع عملیات ، نوع کاغذ ، نحوه برخورد با فونت ها و ... است . کنترل کننده بمنظور انجام عملیات مربوطه بطرز صحیح می بایست اطلاعات فوق را با اولویت درست دریافت نماید.

پس از سازماندهی داده ها ، کنترل کننده  عملیات آماده سازی صفحه را آغاز خواهد کرد. تنظیم حاشیه ها ی متن ، سازماندهی کلمات و استقرار تصاویر مورد نظر و ... را انجام داده  و ماحصل عملیات فوق ایجاد برداری حاوی نقاط متفاوت است . چاپگر بمنظور چاپ یک صفحه به اطلاعات فوق نیاز خواهد داشت .

در اکثر چاپگرهای لیزری ، کنترل کننده قادر به ذخیره  درخواست های مربوط به چاپ در حافظه اختصاصی خود است . با استفاده از ویژگی فوق ، کنترل کننده قادر به استقرار چندین کار در حافظه می باشد ( ایجاد یک صف از کارها ) . پس از استقرار هر درخواست چاپ در حافظه اختصاصی ، امکان چاپ آنها در زمان مربوطه فراهم خواهد شد. در مواردیکه از یک سند می بایست چندین نسخه چاپ گردد ، داده های مربوطه صرفا" یک بار برای چاپگر ارسال و بدین طریق در زمان صرفه جوئی خواهد شد.

لیزر

نقش سیتم لیزر چاپگر در ایجاد خروجی مورد نظر بسیار حائز اهمیت است . در چاپگرهای لیزری قدیمی ، سیستم فوق از عناصر زیر تشکیل شده بود :

§ یک لیزر

§ یک آیینه قابل حرکت

§ یک لنز

لیزر داده های مربوط به صفحه را دریافت ( نقاط ) و بر اساس اطلاعات فوق متن و تصویر مورد نطر را ایجاد می کرد. در هر زمان(لحظه) یک خط افقی چاپ می گردید. همزمان با حرکت پرتو های نور بر روی استوانه ، لیزر یک پالس نوری برای هر یک از نقاط مورد نظر جهت چاپ را منعکس می نمود. برای فضا های خالی پالسی تولید نمی گردید. لیزر نقشی در حرکت پرتو های نور نداشته و باعث تابش نور از طریق یک آیینه قابل حرکت است. همزمان با حرکت آیینه ، توسط مجموعه ای از لتزها نور تابانده می گردید.با نتظیم فاصله بین آیینه و نقاط در زمان تابش نور ، از بهمم ریختگی تصویر پیشگیری بعمل می آمد.

دستگاه لیزری صرفا" در جهت افقی حرکت می کرد.پس از پیمایش افقی  ، چاپگر استوانه مربوطه را حرکت داده تا زمینه ایجاد خط بعدی توسط دستگاه لیزر فراهم گردد.

برخی از چاپگرهای لیزری از مجموعه ای  دیود نوری (LED) برای نوشتن محتویات صفحه استفاده می نمایند. هر یک از نقاط دارای نور اختصاصی خود خواهد بود. چاپگرهای با تکنولوژی فوق نسبت به چاپگرهائی که از دستگاه لیزری استفاده می نمایند ، دارای قیمت ارزان تری می باشند.

تونر

یکی از مهمترین شاخص های یک چاپگر لیزری ، تونر است . تونز یک نوع پودر الکتریکی شارژ شده بوده که  دارای دو عنصر اصلی : رنگ دانه و پلاستیک است . رنگ دانه ها تامین کننده رنگ مورد نیاز می باشند ( در چاپگرهای تک رنگ ، رنگ فوق مشکی است )  .رنگ دانه ها با پلاستیک آمیخته شده اند. بدین ترتیب زمانیکه تونر از بین غلتک های داغ عبور می نماید ، گداخته خواهند گردید.

پودر در  یک toner hopper ( یک محفظه کوچک در داخل یک روکش قابل حرکت ) ذخیره می گردد. چاپگر تونر مورد نیاز خود را از طریق devloper unit ( تامین کننده دانه ) از محفظه دریافت می دارد. developer ، یک مجموعه از دانه های مغناطیسی با شارژ منفی است . دانه های فوق به یک پاک کن فلزی قابل چرخش ، متصل خواهند شدبا حرکت میله فوق دانه هایمغناطیسی در محفظه گفته شده قرار خواهند گرفت . با توجه به اینکه دانه های مغناطیسی دارای شارژ منفی می باسند ، تامین کننده دانه ها ، دانه های مثبت تونر را جمع آوری خواهد کرد.درادامه  پاک کن، ذرات را تمیز و آنها را برای استوانه ارسال می دارد. تصاویر الکترواستاتیک دارای شارژ منفی قویتر نسبت به تامین کننده دانه ها بوده و  استوانه شامل ذرات چسبانده شده را از خود دور می نماید. در ادامه استوانه در طول کاغذ حرکت و بموازات آن کاغذ تحت  تاثیر یک میدان قرار گرفته( یک سیم  detac corona )  و تخلیه الکتریکی می گردد.در وضعیت فوق تنها عاملی که باعث نگهداری تونر بر سطح کاغذ می گردد ، نیروی جاذبه است .بمنظور چسباندن تونر بر روی سطح کاغذ  ، می بایست کاغذ از طریق غلتک های داغ بحرکت درآید. در اغلب چاپگرها  ، Toner hopper ، developer,drum assembly  در یک کارتریج قابل تعویض ( مشابه شکل زیر ) قرار می گیرند.

مزایای یک چاپگر لیزری

مهمترین مزایای چاپگرهای  لیزری سرعت ، دقت و مقرون بصرفه بودن  است . یک لیزر فادر به حرکت بسیار سریع بوده و طبیعی است سرعت نوشتن آن بمراتب بیشتر از چاپگرهای جوهر افشان باشد. چاپگرهای لیزری بمراتب گرانتر نسبت به چاپگرهای جوهرافشان می باشند. در مقابل پودر مصرفی آنها زیاد گران نبوده و هزینه نگهداری  آنان بالا نخواهد بود.

چاپگرهای رنگی

در ابتدا اغلب چاپگرهای لیزری بصورت تک رنگ ( سیاه  رنگ نوشته و سفید رنگ کاغذ )   بودند. امروزه چاپگرهای لیزری رنگی نیز متداول و توسط تولیدکنندگان متفاوت عرضه شده اند. عملکرد چاپگرهای رنگی در اکثر موارد مشابه چاپگرهای سیاه و سفید است . یکی از تفاوت های عمده چاپگرهای رنگی با سیا و سفید نحوه انجام فرآیند چاپ با توجه به ماهیت رنگی بودن آنان است . چاپگرهای رنگی برای انجام فرآیند مربوطه از چهار فاز متفاوت استفاده می نمایند. در هر فاز یکی از رنگ های  فیروزه ای ( آبی ) ، سرخابی ( قرمز ) ، زرد وسیاه استفاده می گردد. با ترکیب چهار رنگ فوق مجموعه ای گسترده از رنگ ها بوجود می آید. برخی از چاپگرها دارای چهار تونر و developer unit مجزا بر روی یک چرخ دوار می باشند. برخی دیگر از چاپگرها  برای هر یک از رنگ ها، از دستگاه های لیزر ، استوانه و تونر  مجزا استفاده می نمایند.

چهارشنبه 17/7/1387 - 13:11
آموزش و تحقيقات

سخت افزار   

 هارد دیسک

 بر روی هر کامپیوتر حداقل یک هارد دیسک وجود دارد.برخی از سیستم ها ممکن است دارای بیش از یک هارد دیسک باشند. هارد دیسک یک محیط ذخیره سازی دائم برای اطلاعات را فراهم می نماید . اطلاعات دیجتال در کامییوتر می بایست بگونه ای  تبدیل گردند که بتوان آنها را بصورت دائم بر روی هارد دیسک مغناطیسی  ذخیره کرد.

مبانی هارد دیسک

هارد دیسک در سال 1950 اختراع گردید. هارد دیسک های اولیه شامل دیسک های بزرگ با قطر 20 اینچ ( 50/8 سانتیمتر) بوده و توان ذخیره سازی چندین مگابایت بیشتر را نداشتند. به این نوع دیسک ها در ابتدا " دیسک ثابت می گفتند. در ادامه بمنظور تمایز آنها با فلاپی دیسک ها از واژه " هارد دیسک " استفاده گردید. هارد دیسک ها دارای یک  Platter ( صفحه ) بمنظور نگهداری محیط مغناطیسی می باشند. عملکرد یک هارد دیسک مشابه یک نوار کاست بوده و از یک روش یکسان برای ضبط مغناطیسی استفاده می نمایند. هارد دیسک ونوار کاست از امکانات ذخیره سازی مغناطیسی یکسانی نیز استفاده می نمایند.در چنین مواردی می توان بسادگی اطلاعاتی را حذف و یا مجددا" بازنویسی کرد. اطلاعات ذخیره شده بر روی هر یک از رسانه های فوق ، سالیان سال باقی خواهند ماندعلیرغم وجود  شباهت های موجود ، رسانه های  فوق در مواردی نیز با یکدیگر متفاوت می باشند: - لایه مغناطیسی بر روی یک نوار کاست بر روی یک سطح پلاستیکی نازک توزیع می گردد. در هارد دیسک لایه مغناطیسی بر روی یک دیسک شیشه ای ویا یک آلومینیوم اشباح شده قرار خواهد گرفت . در ادامه سطح آنها بخوبی صیقل داده می شود.

- در نوار کاست برای استفاده از هر یک از آیتم های ذخیره شده می بایست بصورت ترتیبی ( سرعت معمولی و یا سرعت بالا) در محل مورد نظر مستقر تا امکان بازیابی ( شنیدن ) آیتم دلخواه فراهم گردد. در رابطه با هارد دیسک ها می توان بسرعت در هر نقظه دلخواه مستفر و اقدام به بازیابی ( خواندن و یا نوشتن ) اطلاعات مورد نظر کرد.

در یک نوار کاست ، هد مربوط به خواندن / نوشتن می بایست سطح  نوار را مستقیما" لمس نماید. در هارد دیسک هد خواندن و نوشتن در روی دیسک به پرواز در می آید! ( هرگز آن را لمس نخواهد کرد )

- نوار کاست  موجود در ضبط صوت در هر ثانیه 2 اینچ ( 5/08 سانتیمتر ) جابجا می گردد. گرداننده هارد دیسک می تواند هد مربوط به هارد دیسک را  در هر ثانیه 3000 اینچ  به چرخش در آورد

یک هارد دیسک پیشرفته قادر به ذخیره سازی حجم بسیار بالائی از اطلاعات در فضائی اندک و  بازیابی اطلاعات با سرعت بسیار بالا است . اطلاعات ذخیره شده برروی هارد دیسک در قالب مجموعه ای از فایل ها ذخیره می گردند. فایل نامی دیگر برای مجموعه ای از بایت ها است که بنوعی در آنها اطلاعاتی مرتبط به هم ذخیره شده است . زمانیکه برنامه ای اجراء  و در خواست فایلی را داشته باشد، هارد دیسک اطلاعات را بازیابی و آنها برای استفاده  پردازنده ارسال خواهد کرد.

 برای اندازه گیری کارآئی یک هارد دیسک از دو روش عمده استفاده می گردد: -

میزان داده (Data rate) . تعداد بایت هائی ارسالی  در هر ثانیه برای پردازنده است . اندازه فوق بین 5 تا 40 مگابایت در هر ثانیه است .

- زمان جتسجو (Seek Time) . مدت زمان بین درخواست یک فایل توسط پردازنده  تا ارسال اولین بایت فایل مورد نظربرای پردازنده را می گویند.

کالبد شکافی هارد دیسک

بهترین روش شناخت نحوه عملکرد هارد دیسک کالبد شکافی آن است .شکل زیر یک هارد دیسک را نشان می دهد.

یک پوسته ( قاب ) آلومینیومی که کنترل کننده هارد دیسک در درون آن ( یک سمت دیگر ) قرار دارد. کنترل کننده فوق مکانیزمهای خواندن ، نوشتن و موتوری که باعث چرخش صفحات هارد دیسک می شود  را کنترل می نماید

در نزدیکی برد کنترل کننده کانکتورهای مربوط به موتوری که باعث چرخش صفحات هارد می شود قرار دارد.

در صورتیکه روکش مربوطه را از روی درایو برداریم با وضعیتی مشابه شکل زیر برخورد خواهیم کرد.

 

در تصویر فوق موارد زیر مشاهده می گردد: - Platters ( صفحات ) این صفحات می توانند با سرعت 3600 تا 7200 دور در دقیقه چرخش نمایند.

- بازوئی که هد  خواندن و نوشتن را نگاه داشته است . این بازو با سرعتی معادل 50 بار در ثانیه قادر به حرکت در طول هر یک از صفحات است ( حرکت شعاعی )

بمنظور افزایش ظرفیت هارد دیسک می توان تعدادی از صفحات را استفاده کرد . شکل زیر هارد دیسکی با سه صفحه و شش هد خواندن / نوشتن را نشان می دهد.

مکانیزمی که باعث حرکت بازوها بر روی  هارد دیسک می گردد ، سرعت و دقت را تضمین می نماید.در این راستا از یک موتور خطی با سرعت بالا استفاده می گردد.

 

ذخیره سازی داده ها

اطلاعات بر روی سطح هر یک از صفحات هارد دیسک در مجموعه هائی با نام سکتور و شیار ذخیره می گردد. شیارها دوایرمتحدالمرکزی می باشند ( نواحی زرد) که بر روی هر یک از آنها تعداد محدودی سکتور(نواحی آبی ) با ظرفیت بین 256 ، 512 بایت ایجاد می گردد. سکتورهای فوق در ادامه و همزمان با آغاز فعالیت سیستم عامل در واحد های دیگر با نام " کلاستر " سازماندهی می گردند. زمانیکه یک درایو تحت عملیاتی با نام Low level format قرار می گیرد، شیارها و سکتورها ایجاد می گردند. درادامه و زمانیکه درایو High level format  گردید، با توجه به نوع سیستم عامل و سیاست های راهبردی مربوطه ساختارهائی نظیر جدول اختصاص فایل ها،   جدول آدرس دهی فایل ها و...  ایجاد، تا بستر مناسب برای استقرار فایل های اطلاعاتی فراهم گردد

چهارشنبه 17/7/1387 - 13:11
آموزش و تحقيقات

 برد اصلی (MotherBoard)  یکی ازاجزای اساسی و مهم کامپیوترهای شخصی محسوب می گردد.در سال 1982 همزمان با ارائه اولین کامپیوترهای شخصی از  برد اصلی استفاده  گردید. اولین برد اصلی از لحاظ اندازه نسبتا" بزرگ و بر روی آن ریزپردازنده 8080 نصب گردید. این برد  شامل BIOS ، سوکت هائی برای حافظه مربوط به CPU و مجموعه ای از اسلات ها بود که کارت هائی از طریق آنها به برد اصلی متصل می گردیدند. در صورتیکه قصد استفاده از فلاپی درایو و یا یک پورت موازی و ... وجود داشت، می بایست یک برد جداگانه تهیه و آن را از طریق یکی از اسلات های موجود، به برد اصلی متصل کرد. وضعیت فوق سرگذشت اولین بردهای اصلی استفاده شده در کامپیوترهای شخصی بود. شرکت های آی . بی .ام و اپل با ایجاد تغییرات  اساسی، بردهائی را طراحی نمودند که  امکان اضافه کردن پتانسیل های دلخواه و جدید در هر زمان میسر بوده و تولید کنندگان متعدد بتوانند محصولات خود را بر اساس استانداردهای فوق طراحی و به بازار عرضه نمایند.

برداصلی یک  مدار چاپی چند لایه است . مسیرهای  مسی که Traces نامیده می گردند، امکان حرکت سیگنال  و ولتاژ را بر روی برد اصلی فراهم می نمایند. ازتکنولوژی چند لایه استفاده شده تا بدین طریق برخی از لایه های برد ، قادر به حمل داده برای BIOS ، پردازنده و حافظه بوده در حالیکه لایه های دیگر ولتاژ و Ground را بدون نگرانی از اتصال کوتاه  جابجا  نمایند.

 شکل زیر یک برد اصلی را نشان می دهد. برد فوق دارای دو اسلات برای نصب پردازنده (Dual Processor)، پنج اسلات PCI ، چهار پورت USB ، یک اسلات  Communication network riser)CNR )  است .

 

اندازه گذرگاه داده (Data Bus)

برد های اصلی جدید دارای یک گذرگاه داده ئی شصت و چهار بیتی می باشند. گذرگاه فوق عرض بزرگراهی را نشان می دهد که داده ها در طول  آن حرکت و در احتیار پردازنده گذاشته شده و یا پردازنده نتایج عملیات خود را از طریق آنها ارسال می نماید. سرعت و عرض گذرگاه داده ، تاثیر مستقیم بر عملکرد پردازنده دارد . انواع متفاوت گذرگاه ها بشرح ذیل است :

اندازه ( بیت )

مشخصات

 

8/16

Industry Standard Architecture ( ISA )

 

8/16

Extended Industry Standard  Architecture( EISA)

 

16/32

MicroChannel Architecture(MCA)

 

32

VESA Local Bus (VLB)

 

32/64

Peripheral Component InterConnect (PCI)

 

32

Accelerated Graphics Port ( AGP)

 

ChipSets

Chipsets ، امکانات و پتانسیل های خاصی  را برای تراشه پردازنده بر روی برد اصلی فراهم می نمایند. Chipset بمنزله قلب کامپیوتر بوده و مسئولیت کنترل و مشخص نمودن سرعت ، نوع پردازنده ، حافظه و اسلات های استفاده شده را برعهده دارد. یکی  از تراشه های موجود بر روی برد اصلی Super I/o Controller نامیده شده و مهمترین  وظیفه آن کنترل فلاپی دیسک درایو ، صفحه کلید، موس و پورت های سریال و موازی است . بردهای اصلی جدید دارای تراشه هائی بمنظور حمایت USB ، کارت صدا ، کارت شبکه و ... می باشند.

چهارشنبه 17/7/1387 - 13:9
آموزش و تحقيقات

اجزای اصلی هسته

ذرات اساسی که کلیه هسته‌ها از آنها ترکیب شده است، عبارتند از:

· پروتون‌· ها

· نوترون‌· ها

خواص اساسی هسته

این خواص بر دونوع است که عبارتند از :
خواص مستقل از زمان : خواصی هستند که وابسته به زمان نیستند. مانند جرم ، اندازه ، بار

· خواص وابسته به زمان : خواصی هستند که وابستگی به زمان دارند. مانند واپاشی پرتوزا و واکنشهای هسته‌· ای

جرم و بار هسته

جرم هسته را می‌توان با این فرمول زیر پیدا کرد : M=Z×Mh + N×Mn که در آن ، M جرم هسته ، Mh جرم یک اتم هیدروژن یا جرم پروتون و Mn جرم نوترون می‌باشند.

 

شعاع هسته

آزمایش‌های دقیق‌تر با بهره‌گیری از پراگندگی ذرات هسته‌ای دیگر و الکترون‌ها نشان داده‌اند. شعاعی که در آن ، آثار هسته‌ای ظاهر می‌شود، از رابطه زیر بدست می‌آید:
R=R0 A1/3
که در آن ، R0 ثابت شعاع دارای این مقادیر است:R0=1.2 F , 1.4 F که در آن F نماد فرمی ، واحد طول هسته‌ای است و A جرم اتمی می‌باشند.

خواص دینامیکی هسته

· هسته‌· ها مانند اتم‌· ها می‌· توانند در حالت برانگیخته با انرژی‌· های معین باشند. گذارهای بین حالت‌· های برانگیخته با گسیل تابش الکترو مغناطیسی صورت می گیرد )اشعه گاما(.

· هسته‌· ها همچنین می‌· توانند به یگدیگر تبدیل شوند. بعضی از تبدیل‌· ها خود به‌· خود با گسیل الکترون‌· های مثبت یا منفی )ذره بتا( یا گسیل ذره آلفا صورت می‌· گیرد.

· تبدیل‌· های متنوعی را می‌· توان توسط بمباران هسته‌· ای القاء کرد.

· قانون بقای ذرات: تعداد نوکلئون‌· ها تحت هر شرایطی و هر تبدیلی پایسته است(مجموعشان ثابت است(.

چهارشنبه 17/7/1387 - 13:8
آموزش و تحقيقات

ریشه لغوی

این کلمه ، از کلمه یونانی atomos ، غیر قابل تقسیم ، که از a- ، بمعنی غیر و tomos، بمعنی برش ، ساخته شده است. معمولا به معنای اتم‌های شیمیایی یعنی اساسی‌ترین اجزاء مولکول‌ها و مواد ساده می‌باشد.

 

تاریخچه شناسایی اتم

مواد متنوعی که روزانه در آزمایش و تجربه با آن روبه رو هستیم، متشکل از اتم‌های گسسته است. وجود چنین ذراتی برای اولین بار توسط فیلسوفان یونانی مانند دموکریتوس (Democritus) ، لئوسیپوس (Leucippus) و اپیکورینز (Epicureanism) ولی بدون ارائه یک راه حل واقعی برای اثبات آن ، پیشنهاد شد. سپس این مفهوم مسکوت ماند تا زمانیکه در قرن 18 راجر بسکوویچ (Rudjer Boscovich) آنرا احیاء نمود و بعد از آن توسط جان دالتون (John Dalton) در شیمی بکار برده شد.
راجر بوسویچ نظریه خود را بر مبنای مکانیک نیوتنی قرارداد و آنرا در سال 1758 تحت عنوان:

Theoria philosophiae naturalis redacta ad unicam legem virium in natura existentium

چاپ نمود.

 

براساس نظریه بوسویچ ، اتمها نقاط بی‌اسکلتی هستند که بسته به فاصله آنها از یکدیگر ، نیروهای جذب کننده و دفع کننده بر یکدیگر وارد می‌کنند. جان دالتون از نظریه اتمی برای توضیح چگونگی ترکیب گازها در نسبتهای ساده ، استفاده نمود. در اثر تلاش آمندو آواگادرو (Amendo Avogadro) در قرن 19، دانشمندان توانستند تفاوت میان اتم‌ها و مولکول‌ها را درک نمایند. در عصر مدرن ، اتم‌ها ، بصورت تجربی مشاهده شدند.

اندازه اتم

اتم‌ها ، از طرق ساده ، قابل تفکیک نیستند، اما باور امروزه بر این است که اتم از ذرات کوچکتری تشکیل شده است. قطر یک اتم ، معمولا میان 10pm تا 100pm متفاوت است.

ذرات درونی اتم

در آزمایش‌ها مشخص گردید که اتم‌ها نیز خود از ذرات کوچکتری ساخته شده‌اند. در مرکز یک هسته کوچک مرکزی مثبت متشکل از ذرات هسته‌ای ( پروتون‌ها و نوترون‌ها ) و بقیه اتم فقط از پوسته‌های متموج الکترون تشکیل شده است. معمولا اتم‌های با تعداد مساوی الکترون و پروتون ، از نظر الکتریکی خنثی هستند.

طبقه‌بندی اتم‌ها

اتم‌ها عموما برحسب عدد اتمی که متناسب با تعداد پروتون‌های آن اتم می‌باشد، طبقه‌بندی می‌شوند. برای مثال ، اتم های کربن اتم‌هایی هستند که دارای شش پروتون می‌باشند. تمام اتم‌های با عدد اتمی مشابه ، دارای خصوصیات فیزیکی متنوع یکسان بوده و واکنش شیمیایی یکسان از خود نشان می‌دهند. انواع گوناگون اتم‌ها در جدول تناوبی لیست شده‌اند

.

اتم‌های دارای عدد اتمی یکسان اما با جرم اتمی متفاوت (بعلت تعداد متفاوت نوترون‌های آنها) ، ایزوتوپ نامیده می‌شوند.

ساده‌ترین اتم

ساده‌ترین اتم ، اتم هیدروژن است که عدد اتمی یک دارد و دارای یک پروتون و یک الکترون می‌باشد. این اتم در بررسی موضوعات علمی ، خصوصا در اوایل شکل‌گیری نظریه کوانتوم ، بسیار مورد علاقه بوده است.

واکنش شیمیایی اتم‌ها

واکنش شیمیایی اتم‌ها بطور عمده‌ای وابسته به اثرات متقابل میان الکترون‌های آن می‌باشد. خصوصا الکترون‌هایی که در خارجی‌ترین لایه اتمی قرار دارند، به نام الکترون‌های ظرفیتی ، بیشترین اثر را در واکنش‌های شیمیایی نشان می‌دهند. الکترون‌های مرکزی (یعنی آنهایی که در لایه خارجی نیستند) نیز موثر می‌باشند، ولی بعلت وجود بار مثبت هسته اتمی ، نقش ثانوی دارند.

 

پیوند میان اتم‌ها

اتم‌ها تمایل زیادی به تکمیل لایه الکترونی خارجی خود و (یا تخلیه کامل آن) دارند. لایه خارجی هیدروژن و هلیم جای دو الکترون و در همه اتمهای دیگر طرفیت هشت الکترون را دارند. این عمل با استفاده مشترک از الکترونهای اتم‌های مجاور و یا با جدا کردن کامل الکترون‌ها از اتمهای دیگر فراهم می‌شود. هنگامیکه الکترونها در مشارکت اتمها قرار می گیرند، یک پیوند کووالانسی میان دو اتم تشکیل می‌گردد. پیوندهای کووالانسی قویترین نوع پیوندهای اتمی می‌باشند.

یون

هنگامیکه بوسیله اتم ، یک یا چند الکترون از یک اتم دیگر جدا می‌گردد، یون‌ها ایجاد می‌شوند. یون‌ها اتم‌هایی هستند که بعلت عدم تساوی تعداد پروتو ن‌ها و الکترون‌ها ، دارای بار الکتریکی ویژه می‌شوند. یون‌هایی که الکترون‌ها را برمی‌دارند، آنیون (anion) نامیده شده و بار منفی دارند. اتمی که الکترون‌ها را از دست می‌دهد کاتیون (cation) نامیده شده و بار مثبت دارد.

پیوند یونی

کاتیون‌ها و آنیون‌ها بعلت نیروی کولمبیک (coulombic) میان بارهای مثبت و منفی ، یکدیگر را جذب می‌نمایند. این جذب پیوند یونی نامیده می‌شود و از پیوند کووالانسی ضعیفتر است.

مرز مابین انواع پیوندها

همانطور که بیان گردید، پیوند کوالانسی در حالتی ایجاد میشود که در آن الکترون‌ها بطور یکسان میان اتمها به اشتراک گذارده می‌شوند، درحالیکه پیوند یونی در حالی ایجاد می‌گردد که الکترون‌ها کاملا در انحصار آنیون قرار می‌گیرند. بجز در موارد محدودی از حالتهای خیلی نادر ، هیچکدام از این توصیف‌ها کاملا دقیق نیست. در بیشتر موارد پیوندهای کووالانسی ، الکترون‌ها بطور نامساوی به اشتراک گذارده میشوند، بطوریکه زمان بیشتری را صرف گردش بدور اتم‌های با بار الکتریکی منفی‌تر می‌کنند که منجر به ایجاد پیوند کووالانسی با بعضی از خواص یونی می‌گردد.
بطور مشابهی ، در پیوندهای یونی ، الکترون‌ها اغلب در مقاطع کوچکی از زمان بدور اتم با بار الکتریکی مثبت‌تر می‌چرخند که باعث ایجاد بعضی از خواص کووالانسی در پیوند یونی می‌گردد p

چهارشنبه 17/7/1387 - 13:7
آموزش و تحقيقات

اوربیتال

Jump to: navigation, search

از نظر واژه، اوربیتال به معنای خانه الکترون است و ناحیه‌ای است که احتمال یافتن الکترون در آن زیاد است. اوربیتال محدوده‌ای از فضای اطراف هسته است که احتمال یافتن الکترون در آن وجود دارد. این احتمال در نزدیکی هسته بیشترین مقدار را دارد. ولی برای تمام نقاطی از فضا که فاصله معینی از هسته دارند، احتمال معینی وجود دارد. هر اوربیتال می‌تواند حداکثر دو الکترون را در خود جای دهد. دو الکترونی که در یک اوربیتال جای می‌گیرند، دارای چرخش (اسپین) مخالف هستند.

[ویرایش] پیشگفتار

پس از مدل اتمی نیلز بور، اولین بار در مدل اتمی اروین شرودینگر (1961 - 1887)، که بر مبنای رفتار دوگانه الکترون و با تاکید بر رفتار موجی آن بنا شده بود، بحث اوربیتال به میان آمد. در مدل اتمی قبلی (مدل اتمی نیلز بور) برای حرکت الکترون دوایری هم‌مرکز در نظر گرفته شده بود. این بدان معناست که نیلز بور فرض کرده بوده که الکترون در صفحه حرکت می‌کند، که بدیهی است این فرض از واقعیت فاصله زیادی دارد. لذا شرودینگر بر آن شد تا از حضور الکترون در فضایی سه بعدی سخن به میان اورد. نام این فضای سه بعدی اوربیتال است .

معادله شرودینگر پایه مکانیک موجی است. این معادله بر حسب یک تابع موجی (ψ) برای الکترون نوشته می‌شود. از حل معادله شرودینگر اتم هیدروژن یک سلسله جواب به عنوان تابع موج بدست می‌آید. تابع موج ناحیه‌ای در اطراف هسته را نشان می‌دهد که در آن ناحیه، احتمال یافتن الکترون وجود دارد. تابع موجی یک الکترون، آنچه را که اوربیتال نامیده می‌شود، توصیف می‌کند.

برای مشخص کردن موقعیت هر یک از اوربیتال‌های یک اتم از سه عدد n و l و ml (اعداد کوانتومی) استفاده می‌‌کنیم. (چگونه ؟)

اربیتال انواع گوناگون دارد. از جمله: اربیتال s و p و d و f و ...

هر الکترون را می‌توان با چهار عدد کوانتومی مشخص کرد که به منزله شناسنامه الکترون هستند و فاصله نسبی الکترون از هسته (n)، لایه فرعی و شکل اوربیتال (L)، جهت گیری اوربیتال در فضا (s) را بیان می‌کنند. بر اساس اصل طرد پاولی در یک اتم هیچ دو الکترونی را نمی‌توان یافت که تمام چهار عدد کوانتومی آنها یکسان باشد.

[ویرایش] تاریخچه

در مورد ساختمان اتم و نحوه قرار گرفتن الکترون‌ها و پروتون‌ها در آن بررسی‌های زیادی توسط دانشمندان انجام شده و نظریه‌های مختلفی ارائه شده است. تامسون اتم را به شکل کره‌ای یکنواخت از بارهای مثبت تا شعاع تصور می‌کرد که بارهای منفی در محیط خارجی کره پراکنده‌اند. رادرفورد در سال 1911 با استفاده از ذرات آلفا دلایل قانع کننده‌ای مبنی بر وجود هسته اتم ارائه داد. او اتم را به صورت کره‌ای تصور می‌کرد که هسته در وسط آن قرار دارد و الکترون‌ها به فواصل نسبی بینهایت زیاد در خارج از هسته قرار دارند. نیلز بوهر در سال 1913 نظریه ساختمان الکترونی اتم را پیشنهاد کرد.

این نظریه بر اساس مدل اتمی رادرفورد، نظریه کوانتومی پلانک و داده‌های تجربی حاصل از مطالعه طیف‌های اتمی قرار داشت، و بیان می‌کرد که الکترون اتم هیدروژن فقط می‌تواند در مدارهای کروی معین (مدارها یا ترازهای انرژی) که بطور متحدالمرکز دور هسته قرار دارند، وجود داشته باشد. این مدارها تابع محدودیت کوانتومی است. شرودینگر در سال 1926 با طرح معادله‌ای که در آن محدودیت کوانتومی انرژی الکترون و تصور الکترون به صورت موج ساکن، با هم تلفیق شده بود، تابع موجی الکترون (ψ) را معرفی کرد که مختصات مکان الکترون در فضایی که الکترون در آن یافت می‌شود و انرژی الکترون از لحاظ ریاضی را به هم مربوط کرد. اگر الکترون را به صورت ذره‌ای در حال حرکت به دور هسته در نظر بگیریم، ψ2 متناسب با احتمال یافتن الکترون در جزو معینی از فضاست و احتمال یافتن الکترون در ناحیه‌ای که ابر الکترونی غلیظ‌تر باشد بیشتر است.

[ویرایش] تفسیر مکانیکی اوربیتال

شدت هر موج با مجذور دامنه آن متناسب است. تابع موجی (ψ)، تابع دامنه است. مجذور دامنه یا مجذور تابع موجی برای یک حجم کوچک در هر موقعیتی از فضا با چگالی بار الکترونی در آن حجم متناسب است. می‌توان تصور کرد که بار الکترونی به سبب حرکت سریع الکترون به صورت ابر باردار در فضای دور هسته گسترده شده است. این ابر در برخی نواحی غلیظ‌تر از برخی نواحی دیگر است. احتمال یافتن الکترون در هر ناحیه معین متناسب با چگالی ابر الکترونی در آن ناحیه است. این احتمال در ناحیه‌ای که ابر الکترونی غلیظ‌تر ‌باشد، بیشتر خواهد بود. این تفسیر کوششی برای توصیف مسیر الکترون به عمل نمی‌آورد، بلکه فقط پیش‌بینی می‌کند که احتمال یافتن الکترون در کجا بیشتر است. از نظر مکانیک کوانتومی هیچ محدودیتی برای وجود الکترون در فضا اطراف هسته وجود ندارد. پس بینهایت اوربیتال وجود دارد.

[ویرایش] اعداد کوانتومی

مکانیک موجی که نظریه شرودینگر اساس آن است با استفاده از چهار عدد کوانتومی وضعیت الکترون را توصیف می‌کند. این اعداد عبارت‌اند از:

عدد کوانتومی اصلی این عدد نشان‌دهنده ترازهای انرژی است که الکترون‌ها در آن ترازها به دور هسته گردش می‌کنند و عدد صحیحی است. این عدد می‌تواند کلیه مقادیر اعداد صحیح مثبت به ایتثنای صفر را قبول کند.

عدد کوانتومی اندازه حرکت زاویه‌ای مداری آرنولد زمر فیلد در سال 1916 پیشنهاد کرد که هر مدار بوهر (n) با شرط n>1 از لایه‌هایی فرعی با اختلاف انرژی کم تشکیل شده‌است. به هر لایه فرعی یک عدد کوانتومی (L) نسبت داده می‌شود. این عدد نشان دهنده شکل هندسی توزیع تابع احتمال پیدا کردن الکترون در فضای اطراف هسته است وکلیه مقادیر L=0,1,2, … , n-1 را اختیار کند.

عدد کوانتومی مغناطیسی مداری تعداد اوربیتال‌های یک تراز فرعی را می‌توان از این عدد استنتاج کرد که در اثر میدان مغناطیسی هر تراز L به این ترازها شکافته می‌شود. به عنوان مثال میدان مغناطیسی بر اوربیتال کروی S که با عدد L=0 مشخص می‌شود، تأثیری ندارد چون S تقارن کروی دارد و در تمام جهت‌ها بطور یکسان تحت تأثیر خطوط نیرو قرار می‌گیرد. این عدد که با m نشان داده می‌شود، مقادیر ممکن این عدد عبارت‌اند از:

m=+L,…,0,…,-L

عدد کوانتومی مغناطیسی اسپینی این عدد مشخص کننده حرکت تقدیمی الکترون است و با نشان داده می‌شود، و می‌تواند مقادیر 2/1+ , 1/2- را اختیار کند.

ابر الکترونی و مکان الکترون در مورد یک الکترون در حالت n=1 اتم هیدروژن، ابر باردار بالاترین چگالی را در نزدیکی هسته دارد و بتدریج که فاصله از هسته افزایش می‌یابد، رقیق‌تر می‌شود. احتمال یافتن الکترون در حجم کوچکی از فضا، در نزدیکی هسته، بیشترین مقدار را دارد و با افزایش فاصله از هسته به سمت صفر میل می‌کند. لایه‌های کروی بسیار نازکی را که یکی پس از دیگری بطور متحدالمرکز به دور هسته قرار دارند، تصور کنید. احتمال یافتن الکترون در واحد حجم فضای نزدیک به هسته بیشترین مقدار خود را دارد. ولی در عوض یک لایه نزدیک به هسته، در مقایسه با لایه‌های دورتر، تعداد کمتری واحد حجم را در بر می‌گیرد. احتمال شعاعی هر دو این عوامل را با هم به حساب می‌آورد.

[ویرایش] نمودار سطح مرزی

احتمال یافتن الکترون در تمام نقاطی که از هسته به فاصله برابر مقداری است که از طریق نظریه بور برای شعاع لایه n=1 تعیین شده است. در نظریه بوهر، فاصله‌ای است که همواره الکترون لایه n=1 از هسته دارا است. در مکانیک موجی فاصله‌ای از هسته است که الکترون در آن حضور بیشتری دارد.

از آنجا که اصولا در هر فاصله معین از هسته، الکترون امکان حضور دارد، ترسیم ناحیه‌ای با مرز مشخص که احتمال 100 درصد وجود الکترون را در بر بگیرد، ناممکن است. اما می‌توان سطح مرزی را ترسیم کرد که بتواند نقاط با احتمال یکسان را به هم بپیوندد و در برگیرنده حجمی باشد که در آن، احتمال یافتن الکترون زیاد و مثلاً در حدود 90 درصد است. چنین شکلی که نمودار سطح مرزی نامیده می‌شود، برای الکترون اتم هیدروژن در حالت n=1 تقریباً به صورت کروی است.

[ویرایش] انواع اوربیتال

اوربیتال S اوربیتال‌های S دارای تقارن کروی است، تراز n=1 حداکثر دارای دو الکترون است. بنابراین تراز فرعی 1S و 2S و 3S و... هم تقارن کروی دارند، با این تفاوت که اندازه آنها بزرگ‌تر از اوربیتال 1S است.

اوربیتال p اوربیتال p از سه اوربیتال فرعی تشکیل شده است. هر اوربیتال p به شکل دو کره تغییر شکل یافته است که می‌توان آنها را در امتداد یکی از محورهای سه گانه مختصات (z,y,x) تصور کرد از این رو اوربیتال‌های p را با مشخص می‌کنند که در سه جهت مختلف قرار گرفته‌اند. اوربیتال‌های p از لحاظ انرژی برابرند و در غیاب میدان مغناطیسی نمی‌توان تفاوتی بین الکترون‌هایی که این اوربیتال‌ها را اشغال کرده‌اند قایل شد. ولی در بررسی‌های طیفی که تحت تأثیر یک میدان مغناطیسی قرار می‌گیرند. هر اوربیتال p به سه خط شکافته می‌شوند.

اوربیتال d اوربیتال‌های d از 5 اوربیتال فرعی تشکیل شده‌اند که جهت گیری‌های متفاوتی در فضا دارند ولی از لحاظ انرژی باهم هم‌ارز هستند. این اوربیتال‌ها عبارت‌اند از:

اعداد کوانتومی برای ترازهای n=1 , 2 , 3 درجه انحطاط یا چندگانگی تعداد اوربیتال m ms L نام اوربیتال n 2 1 0 ±1/2 0 S 1 8 4 0 ±1/2 0 S 2 8 4 1 ±1/2 1-، 0، 1+ P 2 18 9 0 ±1/2 0 S 3 18 9 1 ±1/2 1-، 0، 1+ p 3 18 9 2 ±1/2 2، 1، 0، 1-، 2- d 3

[ویرایش] درجه انحطاط

تعداد الکترونهایی که مقدار انرژی برابر داشته باشند، درجه انحطاط یا چندگانگی نامیده می‌شوند. حداکثر تعداد الکترونهای هر تراز از فرمول بدست می‌آیند.

 

چهارشنبه 17/7/1387 - 13:7
آموزش و تحقيقات

 

مقدمه

می‌‌دانیم که کره زمین دارای دو نوع حرکت وضعی و انتقالی است. حرکت انتقالی آن به دور خورشید بوده و حرکت وضعی به دور خودش می‌‌باشد. هر یک از این دو نوع حرکت ، دارای اندازه حرکت زاویه‌ای مخصوص به خود هستند که در مورد حرکت انتقالی ، اندازه حرکت زاویه‌ای مداری و در مورد حرکت وضعی ، اندازه حرکت زاویه‌ای اسپینی می‌‌گویند، بدیهی است که اندازه حرکت زاویه‌ای کل برابر با مجموع این دو اندازه حرکت است.
اگر مدلی را در نظر بگیریم که زمین فقط یک نقطه مادی باشد، انتساب تکانه زاویه‌ای به آن بی‌معنی خواهد بود، اما در مدل دیگری که زمین را با ابعاد محدود در نظر می‌‌گیریم، وجود اندازه حرکت زاویه‌ای اسپینی نیز امکان پذیر است. لذا اگر این قضیه را در مورد مدل اتمی ‌بوهر بکار ببریم، با این فرض که الکترون
یک بار نقطه‌ای نبوده، بلکه یک کره کوچک فرض شود، در این صورت الکترون علاوه بر اندازه حرکت زاویه‌ای مداری دارای اندازه حرکت زاویه‌ای اسپینی نیز خواهد بود.

 

تائید تجربی اسپین الکترون

از آن جا که کره مفروض باردار (یعنی الکترون) دارای حرکت است، لذا حرکت چرخشی آن معادل حلقه جریانی است که گشتاور مغناطیسی خاص خود را نیز دارد. اگر واقعا چنین گشتاور مغناطیسیی وجود داشته باشد، باید با میدان برهمکنش داشته و انرژی برهمکنشی نظیر این گشتاور مغناطیسی وجود داشته باشد. این اثرها غیر از برهمکنش گشتاور مغناطیسی مداری با میدان مغناطیسی خارجی است.
بنابراین باید جابجایی در ترازهای انرژی اتمها و نیز در طول موج خطوط طیفی که از اتمها گسیل می‌‌شود، ظاهر شود که مربوط به اسپین الکترون باشد. در طیف سنجهای دقیق چنین جابجائی‌هایی دیده شده‌اند. این نوع آزمایشها و نیز شواهد تجربی دیگر نشان می‌‌دهند که الکترون ، تکانه زاویه‌ای و گشتاور مغناطیسی دارد که به حرکت آن بر مدار پیرامون هسته مربوط نبوده، بلکه به ذات ذره مربوط است.

ویژگیهای اندازه حرکت زاویه‌ای اسپینی

تکانه زاویه‌ای یا اندازه حرکت زاویه‌ای اسپینی الکترون را با S نشان می‌‌دهند. مانند اندازه حرکت زاویه‌ای مداری ، این کمیت نیز کوانتیده است. بنابراین در میدان مغناطیسی ، S هر جهتی را اختیار نمی‌‌کند و فقط مجاز است در جهتهایی قرار گیرد که مولفه آن در امتداد میدان مغناطیسی (اگر میدان مغناطیسی در جهت z فرض شود) ، مضرب 2/1 از ћ باشد. یعنی:


تفاوت بارز مولفه S_z با مولفه z انداه حرکت زاویه‌ای مداری ، در این است که اندازه حرکت زاویه‌ای مداری برخلاف S_z مضرب صحیحی از ћ است.

اسپین الکترون در مکانیک کوانتومی

در مکانیک کوانتومی ‌که تابع موج جانشین مدارهای بوهر می‌‌شود، ارائه تصویری از چرخش الکترون غیر ممکن است. اگر توابع موج الکترون را مانند توده‌های ابری تصور کنیم که پیرامون هسته قرار گرفته‌اند، می‌‌توان تعداد بی‌شماری پیکان بسیار کوچک را در نظر مجسم کرد که در درون توده ابری پراکنده‌اند و همگی در یک راستا ، z+ یا z- ، امتداد دارند. البته آنچه گفته شد یک تصور خیالی است و امیدی به دیدن ساختار اتمی ‌وجود ندارد. چون ابعاد آن هزاران مرتبه از طول موجهای نور کوچکتر است. همچنین برهمکنش فوتونها با اتم ، ساختاری را که دیدن آن مورد نظر است، بشدت تغییر می‌‌دهد.
در هر حال ، مفهوم اسپین الکترون با آزمایشهای متعدد تجربی مورد تائید قرار گرفته است و در مکانیک کوانتومی
‌برای مشخص کردن عدد کوانتومی ‌جدید به نام عدد کوانتومی ‌اسپینی الکترون در نظر گرفته می‌‌شود. همان گونه که اشاره کردیم، این عدد کوانتومی ‌‌فقط می‌‌تواند مقادیر \pm 1/2 را به خود بگیرد.

ساختار ریز

 

شکافت تراز انرژی در اثر گشتاور مغناطیسی اسپین الکترون در نبود میدان خارجی را جفت شدگی اسپین مدار می‌‌نامند. چون اسپین الکترون با میدان مغناطیسی ناشی از اندازه حرکت زاویه‌ای مداری (حرکت الکترون پیرامون هسته) برهمکنش می‌‌کند. در مکانیک کوانتومی ‌با استفاده از حل معادله شرودینگر مقدار این شکافتگی را می‌‌توان تعیین نمود. شکافتگی‌هایی را که از این نوع برهمکنش مغناطیسی در خطوط طیف مربوط به اتمهای مختلف ایجاد می‌‌شوند، در مجموعساختارریزمی‌‌گویند.
البته شکافتگی‌های به مراتب کوچکتر دیگری نیز وجود دارند که حاصل برهمکنش گشتاور مغناطیسی هسته با تکانه زاویه‌ای مداری و اسپین الکترون هستند و ساختار فوق ریز نام دارد

چهارشنبه 17/7/1387 - 13:6
آموزش و تحقيقات

مقدمه

اوربیتال محدوده‌ای از فضای اطراف هسته می‌باشد که احتمال یافتن الکترون در آن وجود دارد. این احتمال در نزدیکی هسته بیشترین مقدار را دارد. ولی برای تمام نقاطی از فضا که فاصله معینی از هسته دارند، احتمال معینی وجود دارد. هر اوربیتال می‌تواند حداکثر دو الکترون را در خود جای دهد. دو الکترونی که در یک اوربیتال جای می‌گیرند، دارای اسپین مخالف هستند.



هر الکترون را می‌توان با چهار عدد کوانتومی مشخص کرد که به منزله شناسنامه الکترون هستند و فاصله نسبی الکترون از هسته (n) ، لایه فرعی و شکل اوربیتال (L) ، جهت گیری اوربیتال در فضا (s) را بیان می‌کنند. بر اساس اصل طرد پاولی در یک اتم هیچ دو الکترونی را نمی‌توان یافت که تمام چهار عدد کوانتومی آنها یکسان باشد.

تاریخچه

در مورد ساختمان اتم و نحوه قرار گرفتن الکترون‌ها و پروتون‌ها در آن بررسی‌های زیادی توسط دانشمندان انجام شده و نظریه‌های مختلفی ارائه شده است. تامسون اتم را به شکل کره‌ای یکنواخت از بارهای مثبت تا شعاع تصور می‌کرد که بارهای منفی در محیط خارجی کره پراکنده‌اند. رادرفورد در سال 1911 با استفاده از ذرات آلفا دلایل قانع کننده‌ای مبنی بر وجود هسته اتم ارائه داد. او اتم را بصورت کره ‌ای تصور می‌کرد که هسته در وسط آن قرار دارد و الکترون‌ها به فواصل نسبی بینهایت زیاد در خارج از هسته قرار دارند. نیلز بوهر در سال 1913 نظریه ساختمان الکترونی اتم را پیشنهاد کرد.
این نظریه بر اساس مدل اتمی رادرفورد ، نظریه کوانتومی پلانک و داده‌های تجربی حاصل از مطالعه طیف‌های اتمی قرار داشت، و بیان می‌کرد که الکترون اتم هیدروژن فقط می‌تواند در مدارهای کروی معین (مدارها یا ترازهای انرژی) که بطور متحدالمرکز دور هسته قرار دارند، وجود داشته باشد. این مدارها تابع محدودیت کوانتومی است. شرودینگر در سال 1926 با طرح معادله‌ای که در آن محدودیت کوانتومی انرژی الکترون و تصور الکترون بصورت موج ساکن ، با هم تلفیق شده بود، تابع موجی الکترون (ψ) را معرفی کرد که مختصات مکان الکترون در فضایی که الکترون در آن یافت می‌شود و انرژی الکترون از لحاظ ریاضی را به هم مربوط کرد.
اگر الکترون را بصورت ذره‌ای در حال حرکت به دور هسته در نظر بگیریم، ψ2 متناسب با احتمال یافتن الکترون در جزو معینی از فضاست و احتمال یافتن الکترون در ناحیه‌ای که ابر الکترونی غلیظ‌تر باشد بیشتر است.

تفسیر مکانیکی اوربیتال

شدت هر موج با مجذور دامنه آن متناسب است. تابع موجی (ψ) ، تابع دامنه است. مجذور دامنه یا مجذور تابع موجی برای یک حجم کوچک در هر موقعیتی از فضا با چگالی بار الکترونی در آن حجم متناسب است. می‌توان تصور کرد که بار الکترونی به سبب حرکت سریع الکترون بصورت ابر باردار در فضای دور هسته گسترده شده است. این ابر در برخی نواحی غلیظ‌تر از برخی نواحی دیگر است.


احتمال یافتن الکترون در هر ناحیه معین متناسب با چگالی ابر الکترونی در آن ناحیه است. این احتمال در ناحیه‌ای که ابر الکترونی غلیظ‌تر ‌‌باشد، بیشتر خواهد بود. این تفسیر کوششی برای توصیف مسیر الکترون به عمل نمی‌آورد، بلکه فقط پیش‌بینی می‌کند که احتمال یافتن الکترون در کجا بیشتر است.
از نظر مکانیک کوانتومی هیچ محدودیتی برای وجود الکترون در فضا اطراف هسته وجود ندارد. پس بی‌نهایت اوربیتال وجود دارد.

اعداد کوانتومی

مکانیک موجی که نظریه شرودینگر اساس آن می‌باشد با استفاده از چهار عدد کوانتومی وضعیت الکترون را توصیف می‌کند. این اعداد عبارتند از :

عدد کوانتومی اصلی

این عدد نشان‌دهنده ترازهای انرژی است که الکترون‌ها در آن ترازها به دور هسته گردش می‌کنند و عدد صحیحی می‌باشد. این عدد می‌تواند کلیه مقادیر اعداد صحیح مثبت به استثنای صفر را قبول کند.

عدد کوانتومی اندازه حرکت زاویه‌ای مداری

آرنولد زمر فیلد در سال 1916 پیشنهاد کرد که هر مدار بوهر (n) با شرط n>1 از لایه‌هایی فرعی با اختلاف انرژی کم تشکیل شده‌است. به هر لایه فرعی یک عدد کوانتومی (L) نسبت داده می‌شود. این عدد نشان دهنده شکل هندسی توزیع تابع احتمال پیدا کردن الکترون در فضای اطراف هسته می‌باشد وکلیه مقادیر L=0,1,2, … , n-1 را اختیار کند.

عدد کوانتومی مغناطیسی مداری

تعداد اوربیتال‌های یک تراز فرعی را می‌توان از این عدد استنتاج کرد که در اثر میدان مغناطیسی هر تراز L به این ترازها شکافته می‌شود. بعنوان مثال میدان مغناطیسی بر اوربیتال کروی S که با عدد L=0 مشخص می‌شود، تاثیری ندارد چون S تقارن کروی دارد و در تمام جهت‌ها بطور یکسان تحت تاثیر خطوط نیرو قرار می‌گیرد. این عدد که با m نشان داده می شود، مقادیر ممکن این عدد عبارتند از :

m=+L,…,0,…,-L

عدد کوانتومی مغناطیسی اسپینی

این عدد مشخص کننده حرکت تقدیمی الکترون است و با نشان داده می‌شود و می‌تواند مقادیر 2/1+ , 2/1- را اختیار کند.

ابر الکترونی و مکان الکترون

در مورد یک الکترون در حالت n=1 هیدروژن ، ابر باردار بالاترین چگالی را در نزدیکی هسته دارد و بتدریج که فاصله از هسته افزایش می‌یابد، رقیق‌تر می‌شود. احتمال یافتن الکترون در حجم کوچکی از فضا ، در نزدیکی هسته ، بیشترین مقدار را دارد و با افزایش فاصله از هسته به سمت صفر میل می‌کند.

لایه‌های کروی بسیار نازکی را که یکی پس از دیگری بطور متحدالمرکز به دور هسته قرار دارند، تصور کنید. احتمال یافتن الکترون در واحد حجم فضای نزدیک به هسته بیشترین مقدار خود را دارد. ولی در عوض یک لایه نزدیک به هسته ، در مقایسه با لایه‌های دورتر ، تعداد کمتری واحد حجم را در بر می‌گیرد. احتمال شعاعی هر دو این عوامل را با هم به حساب می‌آورد.

نمودار سطح مرزی

احتمال یافتن الکترون در تمام نقاطی که از هسته به فاصله برابر مقداری است که از طریق نظریه بور برای شعاع لایه n=1 تعیین شده است. در نظریه بوهر ، فاصله‌ای است که همواره الکترون لایه n=1 از هسته دارا است. در مکانیک موجی فاصله‌ای از هسته است که الکترون در آن حضور بیشتری دارد.

از آنجا که اصولا در هر فاصله معین از هسته ، الکترون امکان حضور دارد، ترسیم ناحیه‌ای با مرز مشخص که احتمال 100 درصد وجود الکترون را در بر بگیرد، ناممکن است. اما می‌توان سطح مرزی را ترسیم کرد که بتواند نقاط با احتمال یکسان را به هم بپیوندد و در برگیرنده حجمی باشد که در آن ، احتمال یافتن الکترون زیاد و مثلا در حدود 90 درصد است. چنین شکلی که نمودار سطح مرزی نامیده می‌شود، برای الکترون اتم هیدروژن در حالت n=1 بصورت کروی می‌باشد.

انواع اوربیتال

اوربیتال S

اوربیتال‌های S دارای تقارن کروی می‌باشد، تراز n=1 حداکثر دارای دو الکترون است. بنابراین تراز فرعی 1S و 2S و 3S و... هم تقارن کروی دارند، با این تفاوت که اندازه آنها بزرگتر از اوربیتال 1S می‌باشد.

 

اوربیتال p

اوربیتال p از سه اوربیتال فرعی تشکیل شده است. هر اوربیتال p به شکل دو کره تغییر شکل یافته است که می‌توان آنها را در امتداد یکی از محورهای سه گانه مختصات (z,y,x) تصور کرد از این رو اوربیتال‌های p را با مشخص می‌کنند که در سه جهت مختلف قرار گرفته‌اند. اوربیتال‌های p از لحاظ انرژی برابرند و در غیاب میدان مغناطیسی نمی‌توان تفاوتی بین الکترون‌هایی که این اوربیتال‌ها را اشغال کرده‌اند قایل شد. ولی در بررسی‌های طیفی که تحت تاثیر یک میدان مغناطیسی قرار می‌گیرند، هر اوربیتال p به سه خط شکافته می‌شوند.

اوربیتال d

اوربیتال‌های d از 5 اوربیتال فرعی تشکیل شده‌اند که جهت گیری‌های متفاوتی در فضا دارند ولی از لحاظ انرژی باهم هم‌ارز هستند. این اوربیتال‌ها عبارتند از :

 

اعداد کوانتومی برای ترازهای n=1 , 2 , 3

درجه انحطاط یا چندگانگی

تعداد اوربیتال

m

ms

L

نام اوربیتال

n

2

1

0

±1/2

0

S

1

8

4

0

±1/2

0

S

2

8

4

1

±1/2

1- ، 0 ، 1+

P

2

18

9

0

±1/2

0

S

3

18

9

1

±1/2

1- ، 0 ، 1+

p

3

18

9

2

±1/2

2 ، 1 ، 0 ، 1- ، 2-

d

3

چهارشنبه 17/7/1387 - 13:5
آموزش و تحقيقات

نگاه اجمالی

اوربیتال‌های مولکولی را با توجه به این که از همپوشانی کدام اوربیتال اتمی پدید آمده باشند، باحروف یونانی سیگما) و π )پی) نمایش می‌دهند. موقع تشکیل یک پیوند دو اوربیتال مولکولی حاصل می‌شود که با توجه به سطح انرژی نسبت به اوربیتال‌های اتمی به اوربیتال‌های مولکولی پیوندی و ضد پیوندی شهرت دارند. به همان اندازه که اوربیتال مولکولی پیوندی ، مولکول را پایدار می‌کند، اوربیتال مولکولی ضد پیوندی باعث ناپایداری پیوندی می‌شود.

با توجه به نارساییهای نظریه پیوند ظرفیت ، هوندا در سال 1928 و مولیکن در سال 1931 نظریه دیگری بر اساس مدل موج اتم در مورد چگونگی تشکیل پیوند کووالانسی ارائه دادند که نظریه اوربیتال مولکولی نام گرفته است و به کمک آن بسیاری از خواص مغناطیسی ، ترازهای انرژی ، خواص طیفی و ... را به روشنی می‌توان توجیه کرد. در این نظریه برعکس نظریه پیوند (که فقط دخالت لایه ظرفیت اتمها را در تشکیل پیوند در نظر می‌گیرد) بر اساس این نظریه ، تمام اوربیتالهای اتم می‌تواند در تشکیل اوربیتالهای مولکولی شرکت داشته باشد و این اوربیتالها بین چندین اتم و حتی در سراسر مولکول گسترده یا غیر مستقرند.


برای مولکول نیز مانند اتم ، ترازهای انرژی در نظر گرفته می‌شود که الکترونهای مولکول آنها را مطابق اصل آفبا ، اصل طرد پائولی و قاعده هوند )همانند ترازهای انرژی در اتمها( اشغال می‌کنند. علاوه بر اوربیتالهای پیوندی و غیر پیوندی ، اوربیتالهای ضد پیوندی نیز در تشکیل پیوند و توجیه پایداری و یا ناپایداری مولکول در نظر گرفته می‌شود و به تعداد اوربیتالهای اتمی شرکت کننده ، اوربیتالهای مولکول تشکیل می‌شود.

شرایط همپوشانی اوربیتالها

برای اینکه اوربیتالهای اتمی بتوانند در حد تشکیل پیوند یکدیگر همپوشانی کنند باید دو شرط زیر درباره آنها برقرار باشد:

شرط انرژی

فقط اوربیتالهایی می‌توانند با یکدیگر همپوشانی کنند که دریک سطح انرژی قرار داشته و یا سطوح انرژی آنها به اندازه کافی به یکدیگر نزدیک باشد. مثلا اوربیتال p 3 یک اتم کلر میتواند فقط با اوربیتال p 3 اتم دیگر کلر همپوشانی کند. اوربیتال S اتم H نمی‌تواند با اوربیتال S 1 یا S 2 و اتم کلر همپوشانی کند، زیرا در سطح انرژی بالاتری نسبت به آنها قرار دارد.

شرط تقارن

فقط اوربیتالهایی می‌توانند با یکدیگر همپوشانی کنند که نسبت به محور اصلی مولکول تقارن یکسانی داشته باشند. از اینرو ، مثلا اوربیتال S که تقارن کروی دارد، در تشکیل مولکولهای خطی می‌تواند با اوربیتال P2که نسبت به محور اصلی مولکولی (محور( Z تقارن کامل دارد همپوشانی داشته باشد.

 

انواع اوربیتالهای مولکولی

اوربیتال مولکولی پیوندی

اوربیتال مولکولی که در آن چگالی در ناحیه بین هسته‌ها زیاد است. انرژی دو الکترون که در اوربیتال مولکولی پیوندی قرار می‌گیرند کمتر از هنگامی است که در اوربیتالهای اتمی بوجود آورنده آن قرار گرفته باشند.

اوربیتال مولکولی ضد پیوندی

اوربیتال مولکولی که در آن چگالی الکترونی در ناحیه بین هسته‌ها کم است. انرژی دو الکترون که در اوربیتال مولکولی ضد پیوندی قرار می‌گیرند بیشتر از هنگامی است که در اوربیتالهای اتمی بوجود آورنده آن قرار گرفته باشند.

اوربیتال مولکولی غیر پیوندی

هر گاه دو اتم نتوانند به طریقی بهم نزدیک شوند که امکان همپوشانی اوربیتالهای آنها بوجود آید، همپوشانی اوربیتالها صورت نمی‌گیرد و در نتیجه ، اوربیتالهای اتمی به صورت غیر پیوندی در مولکول باقی خواهند ماند. اوربیتالهای مولکولی را نیز با حروف یونانی سیگما( ، π )پی) و ... نشانه گذاری می‌کنند.

اوربیتالهای مولکولی سیگما: اگر تشکیل یک مولکول دو اتمی را از طریق نزدیک شدن اتمها در امتداد یکی از محورها مثلا x به صورت خطی در نظر بگیریم، دو اوربیتال اتمی (مثلا S 1( به یکدیگر نزدیک می‌شوند و در نتیجه همپوشانی ، دو اوربیتال مولکولی پیوندی سیگما و ضد پیوندی سیگما را به وجود می‌آورند. تمام اوربیتالهای سیگما ، نسبت به محور بین دو هسته کاملا متقارنند و چرخش مولکول به دور این محور ، تغییر قابل مشاهده‌ای در شکل اوربیتال بوجود نمی‌آورد.

نمودار تراز انرژی تشکیل اوربیتالهای مولکولی S δ1و * S δ1 از اوربیتالهای اتمیS 1 دو اتم به شکل زیر می‌باشد:
اوربیتال مولکولی پیوندی نشان دهنده کاهش انرژی سیستم و اوربیتال مولکولی ضد پیوندی نشان دهنده افزایش انرژی سیستم است. هر اوربیتال مولکولی می‌تواند دو الکترون با اسپین
مخالف را در خود جای دهد. در مولکول هیدروژن ، دو الکترون (با اسپینهای جفت شده) اوربیتال S δ1 را که اوربیتالی در دسترس با حداقل انرژی است اشغال می‌کنند. اوربیتال δ*1S اشغال نشده است. تعداد پیوند (مرتبه پیوند) ، در هر مولکول عبارت است از نصف تفاضل الکترونهای ضد پیوندی از الکترونهای پیوندی.

)تعداد الکترونهای ضد پیوندی - تعداد الکترونهای پیوندی) 2/1 = مرتبه پیوند

برای داریم:

= (2-0) / 2=1مرتبه پیوند

در مورد ترکیب دو اتم هلیوم ، باید مجموع چهار الکترون در دو اوربیتال مولکولی جای داده شوند. با جای دادن دو الکترون در اوربیتال δ 1S دو الکترون دیگر ناگزیر δ* 1s را اشغال می‌کنند. از این رو مرتبه پیوند مولکول فرضی عبارتست از:

=1/2(2-2)=0مرتبه پیوند

لذا هلیوم به صورت مولکولی نمی‌تواند وجود داشته باشد. اثر جدا کننده الکترونهای ضد پیوندی ، اثر اتصال دهنده الکترونهای پیوندی را خنثی میکند. شواهدی در دست است که نشان میدهد یونهای مولکولی و میتوانند در شرایط ویژهای وجود داشته باشند. ترکیب دو اوربیتالS 2 ، اوربیتالهای مولکولی S δ 2 و 2S δ* را بوجود می‌آورند که با اوربیتالهای δ و δ* ناشی از ترکیب دو اوربیتال S 1مشابهند.

اما اوربیتالهای مولکولی حاصل از ترکیب اوربیتالهای اتمیP 2کمی پیچیده‌ترند. سه اوربیتال P 2 هر اتم ، در محورهای مختصات دکارتی z ، y ، x قرار دارند. اگر تشکیل یک مولکول دو اتمی از طریق نزدیک شدن سر به سر دو اوربیتال اتمی ) و یا ( صورت گیرد، در نتیجه همپوشانی ، دو اوربیتال مولکولی P δ 2و *P δ 2 را بوجود می‌آورند.

اوربیتالهای مولکولی پی (π)

اگر در تشکیل یک مولکول دو اتمی ، دو اوربیتال اتمی (مثلا ( از پهلو بهم نزدیک شوند، دو اوربیتال مولکولی ، یکی اوربیتال مولکولی پیوندی پی (π) و دیگری اوربیتال مولکولی ضد پیوندی پی ستاره (π*) را بوجود می‌آورند. اوربیتالهای π نسبت به محور بین دو هسته ، تقارن استوانه‌ای ندارند. نزدیک شدن دو اوربیتال P از پهلو ، به تشکیل اوربیتال π می‌انجامد که متشکل از دو ناحیه تراکم بار الکترونی است. این تراکم بار الکترونی در ناحیه بالا و پایین محور بین دو هسته قرار دارند.

در هر حال اثر نهایی اوربیتال π ، بهم نگهداشتن مولکول است. اوربیتال π* ، در ناحیه بین دو هسته ، چگالی الکترونی کمی دارد. اثر نهایی مولکول π* جدا کردن دو اتم از یکدیگر است.

سطح انرژی اوربیتال‌های مولکولی

انرژی یک اوربیتال مولکولی به انرژی اوربیتال‌های اتمی تشکیل دهنده آن و همچنین به میزان و نوع همپوشانی اوربیتال‌های اتمی که در تشکیل آن صورت می‌گیرد، بستگی دارد. به این ترتیب ، انرژی هر دو اوربیتال مولکولی σ 2s و σ* 2s پایین تر از انرژی هر اوربیتال مولکولی است که اوربیتال‌های اتمی 2p حاصل می‌شود. انرژی اوربیتال‌های σ 2p و σ* 2p پایین تر از انرژی هر یک از دو اوربیتال π 2p می‌باشد. زیرا میزان همپوشانی اوربیتال‌های Px 2بیشتر از میزان همپوشانی 2Py یا Pz 2 می‌باشد.

در مولکول‌هایی که اوربیتال‌های مولکولی σ از همپوشانی بین یک اوربیتال Px و s حاصل می‌شود (تاثیر متقابل( s-p ، این همپوشانی اضافی پیوند σ s به ازای تضعیف پیوند σ p ، تقویت می‌شود و همچنین تاثیر متقابل s-p باعث کاهش انرژی اوربیتال σ*s و افزایش انرژی σ* p می‌شود. بنابراین سطح انرژی σ 2p برای مولکول‌های جور هسته متشکل از عناصر گروه دوم (به جز و ( پایین تر از سطح انرژی π 2p می‌باشد. البته تاثیر متقابل s-p به میزان نزدیکتر انرژی اوربیتال‌های p , s بستگی دارد. اگر تفاوت انرژی این دو اوربیتال خیلی زیاد باشد (مثل و ( این تاثیر اضافی مساله بوجود نمی‌آورد.

چهارشنبه 17/7/1387 - 13:4
آموزش و تحقيقات

اطلاعات اولیه

اوربیتال S به شکل کره است و مرکز آن در هسته اتم قرار دارد. برای تشکیل پیوند ، دو هسته باید به اندازه کافی به یکدیگر نزدیک شوند تا همپوشانی مولکولهای اوربیتال‌های اتمی صورت پذیرد. نشان دادن اوربیتال‌های اتمی با حروف( ... P , S ,) مرسوم است. اوبیتال‌های مولکولی نیز با حروف یونانی ) σ سیگما(،)п پی) و غیره نشانه‌گذاری می‌شوند.

 

تشکیل پیوند سیگما

اوربیتال‌های مولکولی (H2)، از همپوشانی دو اوربیتال (S) از دو اتم هیدروژن حاصل شده‌اند. اگر همپوشانی طوری بین دو اوربیتال صورت پذیرد که ابر الکترونی بین دو هسته ، همدیگر را تقویت کنند، چگالی الکترونی در ناحیه بین دو هسته زیاد خواهد بود. جاذبه دو هسته با بار مثبت نسبت به ابر الکترونی اضافه با بار منفی ، مولکول را به هم نگه می‌دارد و مولکول پایدارتر از اتم‌های هیدروژن می‌شود.
اوربیتال‌های پیوندی یا اوربیتال مولکولی حاصل را ، اوربیتال‌های سیگما و این پیوندها را پیوندهای سیگما می‌نامند و با نماد (σ) نشان داده می‌شوند.

تشکیل اوربیتال ضد پیوندی سیگما

چون دو اوربیتال اتمی با یکدیگر ترکیب شده‌اند، باید دو اوربیتال مولکولی بدست آید. اوربیتال مولکولی دیگر حاصل از ترکیب که در آن ابر الکترونی بین دو هسته ، همدیگر را تضعیف کنند. در این حالت چگالی الکترونی در ناحیه بین دو هسته خیلی کم است. چون دو هسته مثبت همدیگر را دفع می‌کنند و در فاصله بین آنها چگالی کم الکترونی قادر به جبران این دافعه با ایجاد جاذبه‌ای قوی نیست، لذا نزدیک نگاه داشتن دو هسته در این حالت نیازمند انرژی است. این اوربیتال مولکولی را اوربیتال ضد پیوندی سیگما ( با نشان *) می‌نامند. چون نه تنها در به هم نگه داشتن دو اتم کمک نمی‌کند، بلکه عمل آن در جهت دور کردن دو اتم از یکدیگر است.

تقارن اوربیتال‌های سیگما

اوربیتال‌های سیگما σ) و σ* هر دو)، به دور محوری که دو هسته را به یکدیگر متصل می‌کند، تقارن استوانه‌ای دارند و چرخش مولکول دور این محور ، تغییر قابل مشاهده‌ای در شکل اوربیتال به وجود نمی‌آورد.

 

انرژی اوربیتال‌های سیگما

انرژی اوربیتال پیوندی (σ) از انرژی هر یک از اوبیتال‌های اتمی که آن را بوجود آورده‌اند کمتر است، در حالی که انرژی اوربیتال ضد پیوندی (σ*) بالاتر است. وقتی دو اوربیتال اتمی ترکیب می‌شوند، اوربیتال مولکولی پیوندی نشان دهنده کاهش انرژی سیستم و اوربیتال مولکولی ضد پیوندی نشان دهنده افزایش انرژی سیستم است.

مرتبه پیوند

هر اوربیتال ( اتمی یا مولکولی ) می‌تواند دو الکترون با اسپین مخالف را در خود جای دهد. در مولکول هیدروژن دو الکترون ( با اسپین‌های جفت شده ( اوربیتال ( σ1S) را که اوربیتالی در دسترس با حداقل انرژی است اشغال می‌کنند. اوربیتال (S *σ 1( اشغال شده است. تعداد پیوند یا مرتبه پیوند ، در هر مولکول عبارت است از نصف الکترون های ضد پیوندی از الکترون های پیوندی است که برای (H2) مرتبه پیوند 1 و برای (He) صفر است

چهارشنبه 17/7/1387 - 13:2
مورد توجه ترین های هفته اخیر
فعالترین ها در ماه گذشته
(0)فعالان 24 ساعت گذشته