• مشکی
  • سفید
  • سبز
  • آبی
  • قرمز
  • نارنجی
  • بنفش
  • طلایی
تعداد مطالب : 575
تعداد نظرات : 186
زمان آخرین مطلب : 3650روز قبل
تفریق دو بردار را نیز می‌توان با استفاده از قاعده جمع برداری مشخص نمود. به عنوان مثال اگر بخواهیم حاصل A-B را تعیین کنیم، بردار A را با بردار B - که برداری به اندازه B و در خلاف جهت آن است، جمع کنیم.
چهارشنبه 12/12/1388 - 8:58
برای جمع دو بردار به روش تحلیل قواعد مختلفی وجود دارد که در اینجا به چند نمونه اشاره می‌شود.


  • روش متوازی الاضلاع: فرض کنید بخواهیم دو بردار دلخواه را با هم جمع کنیم. برای اینکار مبدا مختصات را بر ابتدای یکی از این بردارها منطبق فرض می‌کنیم، حال از ابتدای همین برداری ، بردار دیگری به موازات بردار دوم و درست برابر با اندازه آن (بزرگی اش با آن برابراست رسم می‌کنیم. حال از انتهای بردار اول بردار دیگری دقیقا موازی بردار اول و به اندازه آن رسم می‌کنیم. به این ترتیب یک متوازی الاضلاع حاصل می‌شود. قطری از متوازی الاضلاع که ابتدای آن بر ابتدای دو بردار اولیه منطبق است، بردار حاصل جمع بردار اولیه خواهد بود.

  • روش تجزیه: در این روش که بیشتر مورد استفاده قرار می‌گیرد، کار به این صورت است که یک سیستم مختصات با محورهای X,Y,Z در نظر می‌گیریم. از ابتدای مختصات بردارهایی دقیقا در راستای بردارهای اولیه و درت به اندازه آنها رسم می‌کنیم.حال هر بردار در محورهای مختصات به مولفه‌هایش تجزیه می‌کنیم. به این ترتیب سه معادله می‌توانیم بنویسیم. هر معادله با مجموع مولفه‌ها در راستای یک محور با توجه به علامت آنها (که بسته به جهت مولفه تعیین می‌شود) نوشته می‌شود.

    به این ترتیب هر سه مولفه بردار حاصل جمع حاصل می‌شود. برای تعیین جهت بردار حاصل جمع باید از روش هندسی و روشهای مثلثاتی کرده و مقدار زاویه‌ای را که بردار حاصل جمع با محورها می‌سازد، تعیین کنیم. حسن این روش در این است که علاوه بر دو بردار می‌توان حاصل جمع چندین بردار را براحتی تعیین کنیم.
چهارشنبه 12/12/1388 - 8:58
بردارها معمولا به دو صورت می‌توانند در هم ضرب شوند. این دو به نامهای ضرب داخلی یا عددی و ضرب برداری معروف هستند.

ضرب عددی

ضرب عددی دو بردار B و A با نماد B.A نمایش داده می‌شود و حاصل آن برابر است با حلصضرب بزرگی دو بردار در کسینوس زاویه بین آنها از آنجا که90 Cos برابر صفر است، لذا می‌توان گفت که اگر حاصضرب عددی دو بردار برابر صفر باشد در این صورت این دو بردار بر هم عمودند.

ضرب برداری

ضرب برداری دو بردار دلخواه B,A بصورت A×B نشان داده می‌شود و مقدار آن برابر است با حاصضرب بزرگی دو بردار در سینوس زاویه بین آنها. همچنین می‌دانیم که سینوس صفر یا 180 درجه صفر است، بنابراین دو بردار موازی باشند، در این صورت حاصل ضرب برداری آنها صفر خواهد شد.
چهارشنبه 12/12/1388 - 8:57
دو بردار را در صورتی مساوی می‌گویند که بزرگی و جهت آن دو با هم برابر باشند. به عبارت دیگر برای تساوی دو بردار علاوه بر اینکه باید اندازه یا بزرگی آنها با هم برابر باشد، باید هم جهت نیز باشد
چهارشنبه 12/12/1388 - 8:57
گفتیم که هر کمیت برداری علاوه بر مقدا و یکا با جهت نیز مشخص می‌شود، از نظر ترسیمی ، یک بردار با یک پاره خط و یک پیکان در یک انتهای آن نمایش داده می‌شود. طول پاره خط تقریبا متناسب با بزرگی کمیت برداری است، پیکان جهت کمیت برداری را نشان می‌دهد. به عنوان مثال اگر A یک کمیت برداری باشد، در این صورت نمایش داده می‌شود.
چهارشنبه 12/12/1388 - 8:56
بیشتر کمیات فیزیکی که در فیزیک و علوم مهندسی با آنها مواجه می‌شویم، به دو صورت اسکالر (نرده‌ای) و برداری هستند. یک کمیت اسکالر تنها با بیان بزرگی و همراه با یکای خود ، اگر داشته باشد، کاملا مشخص می‌شود. به عنوان مثال جرم یک کمیت اسکالر است که با مقدار و یکایش که کیلوگرم است، کاملا مشخص می‌گردد. دسته دیگری از کمیات ، کمیات برداری هستند که علاوه بر مقدار و یکا دارای جهت نیز هستند.

به عنوان سرعت و شتاب نمونه‌هایی از کمیتهای برداری هستند. کمیتهای برداری از قواعد جبر برداری پیروی می‌کنند و علاوه بر آن هندسه ، دیفرانسیل و انتگرال که در نمایش ریاضی کمیتهای فیزیکی ، نقش بسیار مهمی‌دارد، نیز ضروری است. کلید این مباحث در مطالبی تحت عنوان آنالیز برداری که به مفهوم تحلیل و بررسی مسائل مربوط به بردارهاست، مورد بحث قرار می‌گیرد.
چهارشنبه 12/12/1388 - 8:56
در حالت کلی سه بعدی دو نوع تابع می‌توان در نظر گرفت. توابع نقطه‌ای اسکالر و توابع نقطه‌ای برداری. به عنوان مثال تابع انرژی پتانسیل یک تابع نقطه‌ای اسکالر است، در صورتی که شدت میدان الکتریکی یک تابع نقطه‌ای برداری است. همچنین انتگرال گیری نیز می‌تواند به سه صورت خطی ، سطحی و حجمی صورت گیرد. در حالت اول انتگرال گیری بر روی یک منحنی صورت می‌گیرد. اما در حالت دوم انتگرال گیری روی یک سطح و سرانجام در حالت چهارم روی یک حجم صورت می‌گیرد. نکته قابل توجه در اینجا این است که انتگرال گیری با توجه به تقارن موجود و نیز نوع تابع مسئله در سیستمهای مختصاتی مختلف انجام داد. به عنوان مثال اگر مسئله مورد نظر ما دارای تقارن کروی باشد بهتر است کلیه انتگرالهایی که در مسئله مورد نیاز است در سیستم مختصات کروی انجام دهیم.
چهارشنبه 12/12/1388 - 8:55
برای مشتق گیری برداری قواعد خاصی وجود دارد که به صورت زیر اشاره می‌شود.
  1. مشتق جمع دو یا چند بردار با مجموع مشتقات تک تک آنها برابر است.

  2. مشتق حاصضرب دو بردار (خواه اسکالر خواه برداری) برابر است با مجموع دو جمله ، که جمله اول شامل حاصضرب مشتق بردار اول در خود بردار دوم و جمله دوم برابر با حاصضرب خود بردار اول در مشتق بردار دوم است. بدیهی است که مشتق حاصلضرب چندین بردار نیز به همین صورت تعریف می‌شود. یعنی به تعداد بردارهایی که در هم ضرب می‌شوند، جمله وجود دارد و در هر جمله مشتق یک بردار وجود دارد. علاوه بر این مشتقات مراتب بالاتر (مشتق دوم و بیشتر) نیز به همین صورت انجام می‌شود.
چهارشنبه 12/12/1388 - 8:55
قاعده دست راست که در بیشتر مسائل فیزیک که با بردارها سر و کار دارند مطرح است، به این صورت بیان می‌شود. فرض کنید A و B دو بردار دلخواهی هستند که به صورت برداری در یکدیگر ضرب می‌شود. برای تعیین جهت بردار حاصضرب کافی است چهار انگشت دست راست را در راستای بردار اول قرار داده و بوسیله چهار انگشت خود این بردار را بطرف بردار دوم بچرخانیم، در این صورت جهت انگشت شست دست راست در راستای بردار منتجه خواهد بود
چهارشنبه 12/12/1388 - 8:55
ضرب بردار در حالت کلی به دو صورت ضرب نقطه‌ای یا عددی و ضرب برداری انجام می‌شود. در ضرب عددی یا اسکالر یا نقطه‌ای که با نماد A.B نمایش داده می‌شود، حاصضرب برابر با است با حاصضرب اندازه یک بردار در اندازه تصویر بردار دیگر بر روی آن. طبیعی است که اگر دو بردار بر هم عمود باشند، حاصضرب آنها صفر خواهد بود. اما در ضرب برداری که بصورت A×B نمایش داده می‌شود، نتیجه حاصضرب ، برداری است که جهت آن با استفاده از قاعده دست راست تعیین می‌شود و اندازه آن با حاصضرب اندازه دو بردار در سینوس زاویه بین آنها برابراست. ضرب برداری علاوه بر دو حالت فوق می‌تواند بصورت مختلط نیز باشد. به عنوان مثل اگر C , B , A سه بردار دلخواه باشند در این صورت می‌توان ضربهایی به شکل A.B×C یا A×B×C نیز تشکیل داد. اما همواره باید توجه داشته باشیم که نتیجه حاصلضرب اسکالر یا عددی یک عدد است در صورتی که نتیجه حاصلضرب برداری یک بردار است.
چهارشنبه 12/12/1388 - 8:54
مورد توجه ترین های هفته اخیر
فعالترین ها در ماه گذشته
(0)فعالان 24 ساعت گذشته